Bill Gates :能源:创新到零排放





==================================
http://dotsub.com/view/9022846a-0f34-4026-81aa-86344f88270c
Bill Gates :能源:创新到零排放
我今天要谈的是能源与气候,这可能有点出人意料 我今天要谈的是能源与气候,这可能有点出人意料 毕竟我在基金会的全职工作主要是关于疾病疫苗和农业种苗的 那些的确是需要我们发明传播,以改善世上最贫穷的二十亿人的生活的东西 那些的确是需要我们发明传播,以改善世上最贫穷的二十亿人的生活的东西 但事实上,能源和气候对这些人极为重要,事实上,比对地球上其他人更加重要 但事实上,能源和气候对这些人极为重要,事实上,比对地球上其他人更加重要 气候的持续恶化意味着他们的庄稼将多年无法生长,意味着洪涝或干旱 气候的持续恶化意味着他们的庄稼将多年无法生长,意味着洪涝或干旱 这些变化将令他们脆弱的环境无法承受 这些变化将令他们脆弱的环境无法承受 这将导致饥荒,导致动荡,导致社会骚乱 所以,气候变化将给他们带来严重后果,同时,能源价格也对他们至关重要
所以,气候变化将给他们带来严重后果,同时,能源价格也对他们至关重要 事实上,如果只能降低一样东西的价格以减少贫困,你一定会首选能源价格 事实上,如果只能降低一样东西的价格以减少贫困,你一定会首选能源价格 能源价格随着人类历史进程逐渐下降,先进文明是建立在先进能源的基础上的 能源价格随着人类历史进程逐渐下降,先进文明是建立在先进能源的基础上的 当年的煤炭革命推进了工业革命 早在二十世纪初,我们就迎来了电价的快速下跌,这就是我们能够享受冰箱空调的原因 早在二十世纪初,我们就迎来了电价的快速下跌,这就是我们能够享受冰箱空调的原因 我们由此可以拥有各种现代化的事物,能够做各种事情 得益于电力,我们能在一个富裕的世界里过着美妙的生活 但是,当我们进一步降低电价的时候,比如再使其便宜两倍 我们就有了一个新的限制,这个限制与二氧化碳有关 我们就有了一个新的限制,这个限制与二氧化碳有关
二氧化碳正在使全球变暖,而计算二氧化碳排放的公式其实非常简单明了 二氧化碳正在使全球变暖,而计算二氧化碳排放的公式其实非常简单明了 当前二氧化碳巨大的排放量将导致温度上升 当前二氧化碳巨大的排放量将导致温度上升 温度的升高将引起一系列非常严重的后果 比如对天气的直接影响,或对生态系统的间接影响,生态系统无法应对剧烈变化的结果就是生态系统的全面崩溃 比如对天气的直接影响,或对生态系统的间接影响,生态系统无法应对剧烈变化的结果就是生态系统的全面崩溃 比如对天气的直接影响,或对生态系统的间接影响,生态系统无法应对剧烈变化的结果就是生态系统的全面崩溃
二氧化碳排放增加和温度升高究竟成怎样的关系,两者间的正反馈效应为何? 二氧化碳排放增加和温度升高究竟成怎样的关系,两者间的正反馈效应为何? 二氧化碳排放增加和温度升高究竟成怎样的关系,两者间的正反馈效应为何? 这中间有一些不确定因素,但不多 至于全球变暖的具体负面影响有多严重,这无法完全确定,但肯定极其严重 至于全球变暖的具体负面影响有多严重,这无法完全确定,但肯定极其严重 我为此多次请教过顶尖的科学家们:我们真的一定要将二氧化碳排放降到零吗? 我为此多次请教过顶尖的科学家们:我们真的一定要将二氧化碳排放降到零吗? 减少到一半或四分之一不行吗? 他们的回答是,除非我们降到零,否则气温将持续上升,那将是一个巨大的挑战 他们的回答是,除非我们降到零,否则气温将持续上升,那将是一个巨大的挑战 他们的回答是,除非我们降到零,否则气温将持续上升,那将是一个巨大的挑战 这不同于让一辆12英尺高的卡车通过限高10英尺的桥,只要想办法挤过去即可 这不同于让一辆12英尺高的卡车通过限高10英尺的桥,只要想办法挤过去即可 二氧化碳的排放是要彻底降到零为止
当前我们每年都排放大量的二氧化碳,总量超过260亿吨 当前我们每年都排放大量的二氧化碳,总量超过260亿吨 美国人约排放量约20吨,贫穷国家人均不到一吨,全球人均排放量约为5吨 美国人约排放量约20吨,贫穷国家人均不到一吨,全球人均排放量约为5吨 美国人约排放量约20吨,贫穷国家人均不到一吨,全球人均排放量约为5吨 无论如何,我们都要做出改变,直至把这个数字降到零 无论如何,我们都要做出改变,直至把这个数字降到零 这个数字现在还在继续上升中,只有经济波动才稍稍抑制其上升的势头 这个数字现在还在继续上升中,只有经济波动才稍稍抑制其上升的势头 我们不但要扭转其迅速上升的势头,还要让它下降,并且一路降到零 我们不但要扭转其迅速上升的势头,还要让它下降,并且一路降到零
这个二氧化碳的公式有四个因素,四者相乘 这个二氧化碳的公式有四个因素,四者相乘 等式左面是二氧化碳排放量,我们的目标是让它降到零 二氧化碳排放=人口总数 X 人均使用的服务量 X 每单位服务平均耗用能源量 X 每单位能源的二氧化碳排放 二氧化碳排放=人口总数 X 人均使用的服务量 X 每单位服务平均耗用能源量 X 每单位能源的二氧化碳排放 二氧化碳排放=人口总数 X 人均使用的服务量 X 每单位服务平均耗用能源量 X 每单位能源的二氧化碳排放 二氧化碳排放=人口总数 X 人均使用的服务量 X 每单位服务平均耗用能源量 X 每单位能源的二氧化碳排放 下面让我们逐个来看各个因子,看看怎样才能将等式最终降为零 下面让我们逐个来看各个因子,看看怎样才能将等式最终降为零 显然,我们需要至少一个因子非常接近于零,这是简单的高中代数 (老美高中才学这个?) 显然,我们需要至少一个因子非常接近于零,这是简单的高中代数 (老美高中才学这个?)♫ 我们来看一下,首先是人口
我们来看一下,首先是人口 目前世界上有68亿人,这将继续增长到约90亿人 目前世界上有68亿人,这将继续增长到约90亿人 如果我们在新疫苗开发、医疗服务、生殖健康方面的工作做得卓有成效的话 如果我们在新疫苗开发、医疗服务、生殖健康方面的工作做得卓有成效的话 这个数字可能可以减少10%到15%,这样的话综合增长率约为1.3 这个数字可能可以减少10%到15%,这样的话综合增长率约为1.3
第二个因子是我们使用的服务 这包括所有东西:我们吃的食物,穿的衣服,电视,暖气,都是些非常美好的事物 这包括所有东西:我们吃的食物,穿的衣服,电视,暖气,都是些非常美好的事物 这包括所有东西:我们吃的食物,穿的衣服,电视,暖气,都是些非常美好的事物 摆脱贫穷就意味着向地球上每个人提供这些服务,这个因子进一步提高才是好事 摆脱贫穷就意味着向地球上每个人提供这些服务,这个因子进一步提高才是好事 摆脱贫穷就意味着向地球上每个人提供这些服务,这个因子进一步提高才是好事 在发达国家里,最富裕的十亿人,或许可以控制消费,减少一些服务享受 在发达国家里,最富裕的十亿人,或许可以控制消费,减少一些服务享受 但总体而言,这个数字将会逐年上升,最终人均享受的服务,将翻一番还不止 但总体而言,这个数字将会逐年上升,最终人均享受的服务,将翻一番还不止 但总体而言,这个数字将会逐年上升,最终人均享受的服务,将翻一番还不止 在这一地区,我们享有的服务非常基础:你家里有没有写作业的照明灯光? 在这一地区,我们享有的服务非常基础:你家里有没有写作业的照明灯光? 这些孩子就没有,所以他们要到外面去,坐在路灯下面写作业 这些孩子就没有,所以他们要到外面去,坐在路灯下面写作业
下面一个因素是效率,也就是每项服务所消耗的能源 在这一项上我们总算有了些好消息:这一因子不会持续上升 在这一项上我们总算有了些好消息:这一因子不会持续上升 通过各种发明和新的照明方法,通过新技术的汽车,新的建筑方式 通过各种发明和新的照明方法,通过新技术的汽车,新的建筑方式 我们可以将很多服务所消耗的能源大大降低,个别服务,甚至可以降低百分之九十 我们可以将很多服务所消耗的能源大大降低,个别服务,甚至可以降低百分之九十 我们可以将很多服务所消耗的能源大大降低,个别服务,甚至可以降低百分之九十 但另外一些服务,比如化肥生产,航空运输等,可以提升的空间较为有限 但另外一些服务,比如化肥生产,航空运输等,可以提升的空间较为有限 但另外一些服务,比如化肥生产,航空运输等,可以提升的空间较为有限 所以,综合来看,对这一项的乐观估计为:我们可能能实现三到六倍的下降 所以,综合来看,对这一项的乐观估计为:我们可能能实现三到六倍的下降 就已讨论三个因素来说,我们最多将排放量从260吨降到130亿吨,这还远远不够 就已讨论三个因素来说,我们最多将排放量从260吨降到130亿吨,这还远远不够 就已讨论三个因素来说,我们最多将排放量从260吨降到130亿吨,这还远远不够
最后,我们来看第四个因素,也是最关键的一个 最后,我们来看第四个因素,也是最关键的一个 也就是每单位能源所排放的二氧化碳 我们的问题是,这一因素真的能降到零吗? 烧煤肯定不行,烧气也不行 烧煤肯定不行,烧气也不行 我们现有的所有发电方式都会产生二氧化碳,除了发展中的的可再生能源与核能 我们现有的所有发电方式都会产生二氧化碳,除了发展中的的可再生能源与核能 所以,我们需要在全球范围内建立一个新系统,我们需要能源奇迹 所以,我们需要在全球范围内建立一个新系统,我们需要能源奇迹 所以,我们需要在全球范围内建立一个新系统,我们需要能源奇迹
虽然我用了“奇迹”一词,但这并不是说这件事是不可能的 微处理器是奇迹,个人电脑是奇迹,互联网及其应用也是奇迹 微处理器是奇迹,个人电脑是奇迹,互联网及其应用也是奇迹 也就是说,在座的各位已经目睹甚至参与了很多奇迹的发生 一般来说,我们不会对奇迹的发生设置最后期限 一般来说,我们不会对奇迹的发生设置最后期限 通常,你只是袖手旁观,有些奇迹就发生了,有些则没有 但在低碳减排这件事上,我们必须全力以赴去推动,从而在最终期限前实现这一奇迹 但在低碳减排这件事上,我们必须全力以赴去推动,从而在最终期限前实现这一奇迹
我想,我怎样才能更好地呈现这一问题呢?有没有一种自然生动的表达? 我想,我怎样才能更好地呈现这一问题呢?有没有一种自然生动的表达? 有没有某种演示能激发人们的想象力? 我回想起一年前我带了些蚊子到这里来,大家好像还蛮喜欢的 我回想起一年前我带了些蚊子到这里来,大家好像还蛮喜欢的 (盖茨在上一次TED演讲上放了一些蚊子以引起与会者对疟疾的关注) 蚊子让那次的与会者真正地意识到:世界上有些人是与蚊子一起生活的 蚊子让那次的与会者真正地意识到:世界上有些人是与蚊子一起生活的 所以,今天既然在谈能源,我想到带来这个:萤火虫 我决定,放飞萤火虫将是我今年对这里环境做出的贡献 我决定,放飞萤火虫将是我今年对这里环境做出的贡献 这是几只天然的萤火虫,据说不咬人,说不定它们都懒得出那个罐子 这是几只天然的萤火虫,据说不咬人,说不定它们都懒得出那个罐子 这是几只天然的萤火虫,据说不咬人,说不定它们都懒得出那个罐子
像萤火虫这样的解决能源问题有奇思妙想有很多,但实际作用相当有限 像萤火虫这样的解决能源问题有奇思妙想有很多,但实际作用相当有限 我们需要的是解决方案,一个或很多个都行,极具规模性和可靠性的解决方案 我们需要的是解决方案,一个或很多个都行,极具规模性和可靠性的解决方案 我们需要的是解决方案,一个或很多个都行,极具规模性和可靠性的解决方案 尽管人们在多方探索,我觉得目前只有五个方向可以有大作为 尽管人们在多方探索,我觉得目前只有五个方向可以有大作为 我没有包括潮汐、地热、聚变和生物燃料等,那些都将有所贡献 我没有包括潮汐、地热、聚变和生物燃料等,那些都将有所贡献 如果它们的表现能超过我的预期,当然更好 但关键的是,我们在这五种方式上必须全部大力投入 但关键的是,我们在这五种方式上必须全部大力投入 不能因为他们看似艰巨而放弃,因为它们都包含着严峻的挑战 不能因为他们看似艰巨而放弃,因为它们都包含着严峻的挑战
首先来看一下化石燃料,烧煤或者烧气 首先来看一下化石燃料,烧煤或者烧气 我们需要做的,说来简单,其实不然 需要采取的措施是把所有燃烧产生的二氧化碳,通过烟囱收集,然后加压、液化,储存 需要采取的措施是把所有燃烧产生的二氧化碳,通过烟囱收集,然后加压、液化、储存,并保证不泄漏 需要采取的措施是把所有燃烧产生的二氧化碳,通过烟囱收集,然后加压、液化、储存,并保证不泄漏 当前的试验已经能做到60%至80%的水平,但要做到百分之百会十分的困难 当前的试验已经能做到60%至80%的水平,但要做到百分之百会十分的困难 并且在哪里储存那么大量的二氧化碳也容易引起争议 最困难的是这是个长期问题 谁能保证它呢? 这些废料体积十亿倍于其它核废料等废品,谁能保证长期安全? 这些废料体积十亿倍于其它核废料等废品,谁能保证长期安全? 这个二氧化碳的量非常大,所以会十分困难 这个二氧化碳的量非常大,所以会十分困难
下一个,核能,同样有三个大问题 下一个,核能,同样有三个大问题 它的成本,尤其是在高度管控的国家,非常高 安全问题,保证一切有条不紊 即使有人工操作 即使核燃料不会被用作武器 还有核废弃物要怎么处理的问题 虽然量并不大,但有很多令人顾虑的地方 好的解决方式必须让人们感到安心 这是三个困难但可能可以解决的问题 所以需要继续努力
五种能源的最后三个,我会放在一起来讲 这是人们通常称为可再生能源的三种能源 事实上,它们虽然不需要燃料 但也有不足之处 首先是这些技术所收集到的能源的密度,要远远小于电厂 首先是这些技术所收集到的能源的密度,要远远小于电厂 这是能源农业,其规模都是平方公里级的 比常规的发电厂要大几千倍 还有,这些能源是间歇性的 太阳不是一整天都有,也不是每天都有 同样,风也不是一直在吹 如果完全依赖这些来源 你还得有其它渠道来获取能源,以度过间歇期 你还得有其它渠道来获取能源,以度过间歇期 因此,我们面临巨大的成本问题 还有传输方面的挑战 比如说,某个能源来源在国外 你不仅需要能源技术 还要应对能源不在国内的相关风险
最后,是储存的问题 为了让这个问题具体化,我仔细研究了所有现有的电池 为了让这个问题具体化,我仔细研究了所有现有的电池 车用的,电脑用的,手机的,手电筒的,所有的东西上用的电池 把其存储电量与世界每日消耗电能比较 我发现我们现在制造的所有电池 只能储存不到10分钟的所有能源 所以,实际上,我们需要一个重大的突破 需要一个比现在的技术好一百倍的解决方案 需要一个比现在的技术好一百倍的解决方案 这并不是不可能的,但也不会很容易 这样,我们可以用间歇性能源 提供20%-30%所需的能量 但如果你希望100%地依赖它 你需要一个非常高效的奇迹电池
那么,我们怎么进行下去呢?正确的方法在哪里? 这会是一个曼哈顿计划吗?我们怎么才能到达彼岸? 我们需要很多公司来共同努力,几百家公司 对五种方法中的每一种,我们都需要至少100人的团队 里面的很多人,你会觉得他们很疯狂,这就对了。 我认为,在TED团队里 已经有很多人开始致力于此 比尔格罗斯有好几家公司,其中一个叫eSolar,拥有非常棒的太阳能发热技术 比尔格罗斯有好几家公司,其中一个叫eSolar,拥有非常棒的太阳能发热技术 维诺德科斯拉投资了几十家公司 他们的工作非常棒,并提出很有趣的可能性 我也计划支持他们的项目 其实纳珊米赫沃尔德和我已经在支持一家公司 也许有点让人吃惊,但这个公司是核能方向的 在核能方面虽然近年有些小创新, 像模具化,液体使用等等 但其实创新在这个行业已经停止有一段时间了 所以现在出现一些好点子不是什么太奇怪的事情
Terrapower的想法是:不去烧常规的铀U235 Terrapower的想法是:不去烧常规的铀U235 而是烧剩下的99%,即U238 这是个有些疯狂的想法,但其实,人们已经讨论了很长时间 这是个有些疯狂的想法,但其实,人们已经讨论了很长时间 但一直无法很好地模拟出这是否可行 有了现代超级计算机的不断升级 我们现在能做这个模拟,而且可以预见, 只要用对材料,这方案是可行的
而且,因为我们烧的是以前丢弃的99%核废料 成本可以极大地降低 你实际上是把废料变作燃料 再也不用担心该怎样处理现有所有核反应堆的废料,这是个很好的消息 再也不用担心该怎样处理现有所有核反应堆的废料,这是个很好的消息 这种技术就像蜡烛一样,逐渐烧尽铀废料 过程就如这根柱子所示,通常被称为浪潮反应堆 燃料的问题解决了 这是肯塔基州的一个废料场 这就是那些废料,那99% 这就是U235已耗尽的燃料 被称作耗尽的铀 这些可以为全美国供电数百年 另外,仅仅是通过低成本的海水过滤程序 得到的燃料就足以供应地球下半辈子使用
你看, 前面还会有很多挑战 但这只是数百种方法中的一个例子 需要我们继续推进 想一想,我们要如何衡量我们的成就 我们的成绩单应该打多少分? 先来看一下我们的最终目标,再倒推来看我们的中期目标 先来看一下我们的最终目标,再倒推来看我们的中期目标 已经有很多人在谈到2050年前减碳80% 这真的非常重要,我们必须完成这个目标 而剩下那20%应是贫穷国家的份额 比如一些农业国家 但愿,我们到时已经清理了伐木业和水泥业 所以,要达到这80% 发达国家,以及中国这些国家 需要共同改变它们的发电方式 另外一级是,我们是否部署了零排放技术 我们是否在所有发达国家里都采用了该项技术 并且在向其他地区推广的过程中 这点非常重要 这是交出优秀答卷的关键因素
从2050年往回推,我们2020年的成绩应该是怎样呢? 嗯,一样会有两个部分 我们应该仔细审查那些衡量效率的标准以开始减少排放 我们排放的越少,二氧化碳总量就越少 温度也就越低 但从某个角度来说,我们在2020年取得的成绩 做一些有所减排但并非大量减排的事 仅仅等同于,或低轻于另一件事情的重要性 那就是带来关键突破的那些创新
我们需要全速达成这些技术突破 我们可以用参与的公司的数目, 试验项目,或是调控政策的变化 来衡量 关于这个话题有许多很好的书 比如,戈尔的《我们的选择》 大卫麦基的《不再炽热的可持续能源》 他们用心研究, 并且构建了一个框架 便于对该问题的广泛讨论 因为我们需要对这一问题的广泛支持 需要多方大力协作
这是一个愿望 我们发明这项技术是个非常具体非常现实的愿望 如果我能为下个50年许一个愿望 我可以选择谁来当总统 或者选择一个疫苗,那是我热爱的事业 或者选择能源这件事 发明出能将能源价格减半并且零排放的技术 我肯定会选择能源 这将是影响最大的一个 如果我们没法实现这个愿望 考虑短期目标和长期目标的人们之间会有巨大分歧 美国与中国,穷国和富国之间, 会有巨大分歧 而二十亿人最穷的人中大多数的生活会极大恶化
那么我们必须做什么? 我恳求你们参与推动的到底是什么? 我们应该增加研究资助 在像哥本哈根这样的会议上 各国不应该只讨论二氧化碳减排日程表 也应该讨论创新的日程表 对这些创新方法的投入之低 绝对会让你震惊 我们确实需要一些市场激励,二氧化碳税费,限额和交易 用这些东西来发出价格信号 我们需要把信息传出去 我们应该让这一对话更加理性,更加易于理解 包括政府所采取的措施 这是一个重要的愿望,并且我觉得这是一个可以实现的愿望
谢谢 谢谢 谢谢
主持人:谢谢 谢谢 谢谢,我对Terrapower更了解了 首先,你能大概说下这个投资会是多大规模吗?
比尔盖茨:如果只是买超级计算机, 做出软件 雇佣优秀的科学家,这些我们已经做到了 大概只用几千万 我们甚至去一个俄罗斯的反应堆测试了我们的材料 看看它是否能够正常工作 加起来也不过花费几个亿 最难的是建造试验反应堆 筹措几十亿,找到管理者,选定地点 这样才能建起第一座这样的核电站 当你建起第一座后,如果它确实像说的那样有用, 那一切就都简单了,因为它的经济性、能源密度 与我们所熟悉的核能完全不同
主持人:那么,是不是说,这需要往地下建造 一个用这种废弃铀建成的垂直核燃料柱 一个用这种废弃铀建成的垂直核燃料柱 然后反应从上往下渐进?
盖茨:没错。现在的核反应堆, 你得不停的重新加燃料 所以有很多人为因素和控制可能出错 你需要打开反应堆, 把核燃料搬进搬出,这些都可能出错,一点儿不保险 你需要打开反应堆, 把核燃料搬进搬出,这些都可能出错,一点儿不保险 所以,如果有非常便宜的燃料,一根木柱的大小,就够使用60年 所以,如果有非常便宜的燃料,一根木柱的大小,就够使用60年 把它放下,没有那些复杂的后果 放那儿烧个六十年,然后没了
主持人:那样的核电站本身就是自身废弃物的处理站
盖茨:没错。这个过程产生的垃圾 你可以放在那儿,用这种办法只产生很少的废料 你也可以把它放到另外一个核电站里烧掉 你也可以把它放到另外一个核电站里烧掉 我们可以从处理现有核电站产生的垃圾开始 那些现在在冷却池或者反应堆旁的干罐里的废物 这是我们开始时的燃料 这样,当前那些反应堆自身的麻烦,却成为我们的原料,同时还大大减少了废物 这样,当前那些反应堆自身的麻烦,却成为我们的原料,同时还大大减少了废物 这样,当前那些反应堆自身的麻烦,却成为我们的原料,同时还大大减少了废物 这样,当前那些反应堆自身的麻烦,却成为我们的原料,同时还大大减少了废物
主持人:你和其他地方的人的谈话中 谈到这些可能性的时候 哪些人对实施这件事兴趣最大?
盖茨:我们还没有选定一个特定的地方 由于到处都有关于核问题的保密规定 很多人表示了兴趣 俄罗斯,印度,中国的公司都表现了浓厚的兴趣 我也曾经在这里找过能源部长 谈论如何将这件事融入能源日程表 总地来说我很乐观,同时,法国和日本已经做了一些工作 这是已有成就的一个变体 这是一个重要的进步,但像一个快速反应堆 很多国家已经修建了这样的反应堆 只要你已经有了快速反应堆,就可能成为第一个核垃圾重利用站的建设者
主持人:就你看来,实现这一计划的时间跨度和可能性如何? 主持人:就你看来,实现这一计划的时间跨度和可能性如何?
盖茨:建一个这种大规模的电站,并且成本要非常低 盖茨:建一个这种大规模的电站,并且成本要非常低 我们有20年时间来发明,再有20年时间来执行 这大致也是我们的环境模型所计算出的最终期限 这大致也是我们的环境模型所计算出的最终期限 如果Terrapower一切顺利的话,当然那样会很不容易,可以很容易地满足这一要求 如果Terrapower一切顺利的话,当然那样会很不容易,可以很容易地满足这一要求 目前还有数十家公司在从事这一事业 我们需要几百家 如果它们科研进展顺利 如果他们的试验电站的筹资顺利 他们都可以竞争这项任务 如果能够多方成功那是最好 因为这样就可以同时利用多种方式 但我们至少需要一种能够成功
主持人:如果说到可能的大规模的创新 这个是不是你知道的最大的一个
盖茨:能源的突破是最重要的事 即使没有环境的限制,它还会是最重要的问题 环境的限制使它变得更为突出,更为紧迫 在核领域,还有其它的创新者 但我对他们的工作,我们没有像对这个项目一样清楚 有些人在模块方面的创新,是另外一种方式 还有一种液态反应堆,实现起来有点困难 但也许他们看我们的方式也觉得困难 所以,有很多不同的办法 但核能的美妙之处在于, 一个铀分子所含的能量是其它能源(比如煤)的一百万倍 但核能的美妙之处在于, 一个铀分子所含的能量是其它能源(比如煤)的一百万倍 如果能够处理好负面因素,主要是辐射 如果能够处理好负面因素,主要是辐射 其碳排放、成本以及潜能潜能,就其各种因素而言,将是无与伦比的 其碳排放、成本以及潜能潜能,就其各种因素而言,将是无与伦比的 其碳排放、成本以及潜能潜能,就其各种因素而言,将是无与伦比的
主持人;如果我们没能成功怎么办? 我们得采取什么紧急措施 来保证地球温度的稳定?
盖茨:如果事情发展到那一步 就像吃的太多,可能会得心脏病一样 怎么办?你可能需要心脏手术之类的 有一种研究叫做地球工程学 通过各种技术来延缓全球变暖 可以为我们争取20-30年的时间来共同行动 不过,那就像是一个保险政策 你希望你不会用到 有些人说根本不应该研究保险措施 因为这会使人懈怠 你会持续进食,反正你知道心脏手术可以挽救你 考虑到问题的重要性,我不知道这样是否明智 现在关于地球工程的讨论 应该作为一个后备选择, 以防形势恶化得更快 或者技术创新迟于我们的预期
主持人:对气候变化论的怀疑者, 如果让你对他们说一两句话 你会怎么说服他们?
盖茨:很不幸,怀疑论者来自不同阵营 他们中很少持有科学证据 他们说那些负反馈的结果是由于云的关系 他们说那些负反馈的结果是由于云的关系 他们极少能举出令人信服的证据 即使是百万分之一的概率 这里的主要问题就像艾滋病 现在犯错,将来得加倍的承受痛苦
因此,当你遇到各种紧要问题时 现在承受痛苦关系到将来的收益 而且还是个不确定的痛苦 实际上,IPCC(政府间气候变化专门委员会)报告,那还不是最坏的情况 而且,发达国家也有人看了报告后,说这没什么大不了的 而且,发达国家也有人看了报告后,说这没什么大不了的 事实上, 不确定的方面应该促进我们向这方面努力 但是我的愿望是, 如果你把能源生产变得经济了,同时也符合二氧化碳排放限制 但是我的愿望是, 如果你把能源生产变得经济了,同时也符合二氧化碳排放限制 那么怀疑论者会说:好的,虽然我不关心二氧化碳排放的事情 那么怀疑论者会说:好的,虽然我不关心二氧化碳排放的事情 我甚至还有点希望它会排放二氧化碳 但我会采纳这一新方法,因为能源比以前更便宜了 但我会采纳这一新方法,因为能源比以前更便宜了
主持人: 是否可以说,这就是你对比约恩隆伯格的回应 也就是说,如果你花所有精力来解决二氧化碳的问题,那就会取代其他目标 也就是说,如果你花所有精力来解决二氧化碳的问题,那就会取代其他目标 比如解决世界贫困, 或者疟疾等等的目标 把钱投到那些领域是对资本的浪费,我们有更重要的事情要做 把钱投到那些领域是对资本的浪费,我们有更重要的事情要做
盖茨:实际的研发投入其实没多少,虽说美国应该每年多投入100亿在这上面,这应该不会影响其他事情 盖茨:实际的研发投入其实没多少,虽说美国应该每年多投入100亿在这上面,这应该不会影响其他事情 盖茨:实际的研发投入其实没多少,虽说美国应该每年多投入100亿在这上面,这应该不会影响其他事情 盖茨:实际的研发投入其实没多少,虽说美国应该每年多投入100亿在这上面,这应该不会影响其他事情 对于需要投巨资的事业, 如果不经济没有回报,对我而言基本是浪费,这点有些人可能持不同意见 对于需要投巨资的事业, 如果不经济没有回报,对我而言基本是浪费,这点有些人可能持不同意见 对于需要投巨资的事业, 如果不经济没有回报,对我而言基本是浪费,这点有些人可能持不同意见 除非你已经很接近成功, 而且你在投资学习曲线,并且它将会变得很便宜 除非你已经很接近成功, 而且你在投资学习曲线,并且它将会变得很便宜 否则,我认为我们应该多方尝试具有低成本潜力的方案 否则,我认为我们应该多方尝试具有低成本潜力的方案 如果为了解决气候问题,最后让能源变的异常昂贵,贵到只有富人用得起 如果为了解决气候问题,最后让能源变的异常昂贵,贵到只有富人用得起 对在坐各位来说,如果能源价格提高五倍,还不至于影响我们的生活方式 对在坐各位来说,如果能源价格提高五倍,还不至于影响我们的生活方式 但对地球上那二十亿穷人来说就是个灾难了
而且隆伯格的观点已经变了,他的论点现在是,为什么研究没有得到更多的关注 而且隆伯格的观点已经变了,他的论点现在是,为什么研究没有得到更多的关注 基于历史的原因, 他还是属于怀疑论阵营,但是他已经意识到那是个相当孤独的阵营 基于历史的原因, 他还是属于怀疑论阵营,但是他已经意识到那是个相当孤独的阵营 基于历史的原因, 他还是属于怀疑论阵营,但是他已经意识到那是个相当孤独的阵营 所以,他开始摆出关于研发方面的观点 我觉得那是一个非常值得探讨的话题,因为对科研的投入之少实在是不可理喻 我觉得那是一个非常值得探讨的话题,因为对科研的投入之少实在是不可理喻
主持人:比尔, 我想这里的大多数人都跟我一样,真心希望你的梦想成真,非常感谢! 主持人:比尔, 我想这里的大多数人都跟我一样,真心希望你的梦想成真,非常感谢!
盖茨:谢谢大家
盖茨:谢谢大家

-------------------
Bill Gates on energy: Innovating to zero!
I'm going to talk today about energy and climate. And that might seem a bit surprising because my full-time work at the foundation is mostly about vaccines and seeds, about the things that we need to invent and deliver to help the poorest two billion live better lives. But energy and climate are extremely important to these people, in fact, more important than to anyone else on the planet. The climate getting worse, means that many years their crops won't grow. There will be too much rain, not enough rain. Things will change in ways that their fragile environment simply can't support. And that leads to starvation. It leads to uncertainty. It leads to unrest. So, the climate changes will be terrible for them.
Also, the price of energy is very important to them. In fact, if you could pick just one thing to lower the price of, to reduce poverty, by far, you would pick energy. Now, the price of energy has come down over time. Really, advanced civilization is based on advances in energy. The coal revolution fueled the industrial revolution, and, even in the 1900's we've seen a very rapid decline in the price of electricity, and that's why we have refrigerators, air-conditioning, we can make modern materials and do so many things. And so, we're in a wonderful situation with electricity in the rich world. But, as we make it cheaper -- and let's go for making it twice as cheap -- we need to meet a new constraint, and that constraint has to do with CO2.
CO2 is warming the planet, and the equation on CO2 is actually a very straightforward one. If you sum up the CO2 that gets emitted, that leads to a temperature increase, and that temperature increase leads to some very negative effects. The effects on the weather and, perhaps worse, the indirect effects, in that the natural ecosystems can't adjust to these rapid changes, and so you get ecosystem collapses.
Now, the exact amount of how you map from a certain increase of CO2 to what temperature will be and where the positive feedbacks are, there's some uncertainty there, but not very much. And there's certainly uncertainty about how bad those effects will be, but they will be extremely bad. I asked the top scientists on this several times, do we really have to get down to near zero? Can't we just cut it in half or a quarter? And the answer is that, until we get near to zero, the temperature will continue to rise. And so that's a big challenge. It's very different than saying we're a 12 ft high truck trying to get under a 10 ft bridge, and we can just sort of squeeze under. This is something that has to get to zero.
Now, we put out a lot of carbon dioxide every year, over 26 billion tons. For each American, it's about 20 tons. For people in poor countries, it's less than one ton. It's an average of about five tons for everyone on the planet. And, somehow, we have to make changes that will bring that down to zero. It's been constantly going up. It's only various economic changes that have even flattened it at all, so we have to go from rapidly rising to falling, and falling all the way to zero.
This equation has four factors. A little bit of multiplication. So, you've got a thing on the left, CO2, that you want to get to zero, and that's going to be based on the number of people, the services each person's using on average, the energy on average for each service, and the CO2 being put out per unit of energy. So, let's look at each one of these and see how we can get this down to zero. Probably, one of these numbers is going to have to get pretty near to zero. Now that's back from high school algebra, but let's take a look.
First we've got population. Now, the world today has 6.8 billion people. That's headed up to about nine billion. Now, if we do a really great job on new vaccines, health care, reproductive health services, we could lower that by, perhaps, 10 or 15 percent, but there we see an increase of about 1.3.
The second factor is the services we use. This encompasses everything, the food we eat, clothing, TV, heating. These are very good things, and getting rid of poverty means providing these services to almost everyone on the planet. And it's a great thing for this number to go up. In the rich world, perhaps the top one billion, we probably could cut back and use less, but every year, this number, on average, is going to go up, and so, over all, that will more than double the services delivered per person. Here we have a very basic service. Do you have lighting in your house to be able to read your homework, and, in fact, these kids don't, so they're going out and reading their school work under the street lamps.
Now, efficiency, E, the energy for each service, here, finally we have some good news. We have something that's not going up. Through various inventions and new ways of doing lighting, through different types of cars, different ways of building buildings. there are a lot of services where you can bring the energy for that service down quite substantially, some individual services even, bring it down by 90 percent. There are other services like how we make fertilizer, or how we do air transport, where the rooms for improvement are far, far less. And so, overall here, if we're optimistic, we may get a reduction of a factor of three to even, perhaps, a factor of six. But for these first three factors now, we've gone from 26 billion to, at best, maybe 13 billion tons, and that just won't cut it.
So let's look at this fourth factor -- this is going to be a key one -- and this is the amount of CO2 put out per each unit of energy. And so the question is, can you actually get that to zero? If you burn coal, no. If you burn natural gas, no. Almost every way we make electricity today, except for the emerging renewables and nuclear, puts out CO2. And so, what we're going to have to do at a global scale, is create a new system. And so, we need energy miracles.
Now, when I use the term miracle, I dont mean something that's impossible. The microprocessor is a miracle. The personal computer is a miracle. The internet and its services are a miracle. So, the people here have participated in the creation of many miracles. Usually, we don't have a deadline, where you have to get the miracle by a certain date. Usually, you just kind of stand by, and some come along, some don't. This is a case where we actually have to drive full speed and get a miracle in a pretty tight time line.
Now, I thought, how could I really capture this? Is there some kind of natural illustration, some demonstration that would grab people's imagination here? I thought back to a year ago when I brought mosquitos, and somehow people enjoyed that. (Laughter) It really got them involved in the idea of, you know, there are people who live with mosquitos. So, with energy, all I could come up with is this. I decided that releasing fireflies would be my contribution to the environment here this year. So here we have some natural fireflies. I'm told they don't bite, in fact, they might not even leave that jar. (Laughter)
Now, there's all sorts gimmicky solutions like that one, but they don't really add up to much. We need solutions, either one or several, that have unbelievable scale and unbelievable reliability, and, although there's many directions people are seeking, I really only see five that can achieve the big numbers. I've left out tide, geothermal, fusion, biofuels. Those may make some contribution, and if they can do better than I expect, so much the better, but my key point here is that we're going to have to work on each of these five, and we can't give up any of them because they look daunting, because they all have significant challenges.
Let's look first at the burning fossil fuels, either burning coal or burning natural gas. What you need to do there, seems like it might be simple, but it's not, and that's to take all the CO2, after you've burned it, going out the flue, pressurize it, create a liquid, put it somewhere, and hope it stays there. Now we have some pilot things that do this at the 60 to 80 percent level, but getting up to that full percentage, that will be very tricky, and agreeing on where these CO2 quantities should be put will be hard, but the toughest one here is this long term issue. Who's going to be sure? Who's going to guarantee something that is literally billions of times larger than any type of waste you think of in terms of nuclear or other things? This is a lot of volume. So that's a tough one.
Next, would be nuclear. It also has three big problems. Cost, particularly in highly regulated countries, is high. The issue of the safety, really feeling good about nothing could go wrong, that, even though you have these human operators, that the fuel doesn't get used for weapons. And then what do you do with the waste? And, although it's not very large, there are a lot of concerns about that. People need to feel good about it. So three very tough problems that might be solvable, and so, should be worked on.
The last three of the five, I've grouped together. These are what people often refer to as the renewable sources. And they actually -- although it's great they don't require fuel -- they have some disadvantages. One is that the density of energy gathered in these technologies is dramatically less than a power plant. This is energy farming, so you're talking about many square miles, thousands of time more area than you think of as a normal energy plant. Also, these are intermittent sources. The sun doesn't shine all day, it doesn't shine every day, and, likewise, the wind doesn't blow all the time. And so, if you depend on these sources, you have to have some way of getting the energy during those time periods that it's not available. So, we've got big cost challenges here. We have transmission challenges. For example, say this energy source is outside your country, you not only need the technology, but you have to deal with the risk of the energy coming from elsewhere.
And, finally, this storage problem. And, to dimensionalize this, I went through and looked at all the types of batteries that get made, for cars, for computers, for phones, for flashlights, for everything, and compared that to the amount of electrical energy the world uses, and what I found is that all the batteries we make now could store less than 10 minutes of all the energy. And so, in fact, we need a big breakthrough here, something that's going to be a factor of a hundred better than the approaches we have now. It's not impossible, but it's not a very easy thing. Now, this shows up when you try to get the intermittent source to be above, say, 20 to 30 percent of what you're using. If you're counting on it for 100 percent, you need an incredible miracle battery.
Now, how we're going to go forward on this: what's the right approach? Is it a Manhattan project? What's the thing that can get us there? Well, we need lots of companies working on this, hundreds. In each of these five paths, we need at least a hundred people. And a lot of them, you'll look at and say they're crazy. That's good. And, I think, here in the TED group, we have many people who are already pursuing this. Bill Gross has several companies, including one called eSolar that has some great solar thermal technologies. Vinod Khosla's investing in dozens of companies that are doing great things and have interesting possibilities, and I'm trying to help back that. Nathan Myhrvold and I actually are backing a company that, perhaps surprisingly, is actually taking the nuclear approach. There are some innovations in nuclear: modular, liquid. And innovation really stopped in this industry quite some ago, so the idea that there's some good ideas laying around is not all that surprising.
The idea of Terrapower is that, instead of burning a part of uranium, the one percent, which is the U235, we decided, let's burn the 99 percent, the U238. It is kind of a crazy idea. In fact, people had talked about it for a long time, but they could never simulate properly whether it would work or not, and so it's through the advent of modern supercomputers that now you can simulate and see that, yes, with the right material's approach, this looks like it would work.
And, because you're burning that 99 percent, you have greatly improved cost profile. You actually burn up the waste, and you can actually use as fuel all the leftover waste from today's reactors. So, instead of worrying about them, you just take that. It's a great thing. It breathes this uranium as it goes along. So it's kind of like a candle. You can see it's a log there, often referred to as a traveling wave reactor. In terms of fuel, this really solves the problem. I've got a picture here of a place in Kentucky. This is the left over, the 99 percent, where they've taken out the part they burn now, so it's called depleted uranium. That would power the U.S. for hundreds of years. And, simply by filtering sea water in an inexpensive process, you'd have enough fuel for the entire lifetime of the rest of the planet.
So, you know, it's got lots of challenges ahead, but it is an example of the many hundreds and hundreds of ideas that we need to move forward. So let's think, how should we measure ourselves? What should our report card look like? Well, let's go out to where we really need to get, and then look at the intermediate. For 2050, you've heard many people talk about this 80 percent reduction. That really is very important, that we get there. And that 20 percent will be used up by things going on in poor countries, still some agriculture. Hopefully, we will have cleaned up forestry, cement. So, to get to that 80 percent, the developed countries, including countries like China, will have had to switch their electricity generation altogether. So, the other grade is, are we deploying this zero-emission technology, have we deployed it in all the developed countries and we're in the process of getting it elsewhere. That's super important. That's a key element of making that report card.
So, backing up from there, what should the 2020 report card look like? Well, again, it should have the two elements. We should go through these efficiency measures to start getting reductions. The less we emit, the less that sum will be of CO2, and, therefore, the less the temperature. But in some ways, the grade we get there, doing things that don't get us all the way to the big reductions, is only equally, or maybe even slightly less, important than the other, which is the piece of innovation on these breakthroughs.
These breakthroughs, we need to move those at full speed, and we can measure that in terms of companies, pilot projects, regulatory things that have been changed. There's a lot of great books that have been written about this. The Al Gore book, "Our Choice" and the David McKay book, "Sustainable Energy Without the Hot Air." They really go through it and create a framework that this can be discussed broadly, because we need broad backing for this. There's a lot that has to come together.
So this is a wish. It's a very concrete wish that we invent this technology. If you gave me only one wish for the next 50 years, I could pick who's president, I could pick a vaccine, which is something I love, or I could pick that this thing that's half the cost with no CO2 gets invented, this is the wish I would pick. This is the one with the greatest impact. If we don't get this wish, the division between the people who think short term and long term will be terrible, between the U.S. and China, between poor countries and rich, and most of all the lives of those two billion will be far worse.
So, what do we have to do? What am I appealing to you to step forward and drive? We need to go for more research funding. When countries get together in places like Copenhagen, they shouldn't just discuss the CO2. They should discuss this innovation agenda, and you'd be stunned at the ridiculously low levels of spending on these innovative approaches. We do need the market incentives, CO2 tax, cap and trade, something that gets that price signal out there. We need to get the message out. We need to have this dialogue be a more rational, more understandable dialogue, including the steps that the government takes. This is an important wish, but it is one I think we can achieve.
Thank you. (Applause) Thank you.
Chris Anderson: Thank you. Thank you. (Applause) Thank you. Just so I understand more about Terrapower, right -- I mean, first of all, can you give a sense of what scale of investment this is?
Bil Gates: To actually do the software, buy the supercomputer, hire all the great scientists, which we've done, that's only tens of millions, and even once we test our materials out in a Russian reactor to make sure our materials work properly, then you'll only be up in the hundreds of millions. The tough thing is building the pilot reactor, finding the several billion, finding the regulator, the location that will actually build the first one of these. Once you get the first one built, if it works as advertised, then it's just clear as day, because the economics, the energy density, are so different than nuclear as we know it.
CA: And so, to understand it right, this involves building deep into the ground almost like a vertical kind of column of nuclear fuel, of this sort of spent uranium, and then the process starts at the top and kind of works down?
BG: That's right. Today, you're always refueling the reactor, so you have lots of people and lots of controls that can go wrong, that thing where you're opening it up and moving things in and out. That's not good. So, if you have very cheap fuel that you can put 60 years in -- just think of it as a log -- put it down and not have those same complexities. And it just sits there and burns for the sixty years, and then it's done.
CA: It's a nuclear power plant that is its own waste disposal solution.
BG: Yeah. Well, what happens with the waste, you can let it sit there -- there's a lot less waste under this approach -- then you can actually take that, and put it into another one and burn that. And we start off actually by taking the waste that exists today, that's sitting in these cooling pools or dry casking by reactor. That's our fuel to begin with. So, the thing that's been a problem from those reactors is actually what gets fed into ours, and you're reducing the volume of the waste quite dramatically as you're going through this process.
CA: But in your talking to different people around the world about the possibilities here, where is there most interest in actually doing something with this?
BG: Well, we haven't picked a particular place, and there's all these interesting disclosure rules about anything that's called nuclear, so we've got a lot of interest, that people from the company have been in Russia, India, China. I've been back seeing the secretary of energy here, talking about how this fits into the energy agenda. So I'm optimistic. You know the French and Japanese have done some work. This is a variant on something that has been done. It's an important advance, but it's like a fast reactor, and a lot of countries have built them, so anybody who's done a fast reactor, is a candidate to be where the first one gets built.
CA: So, in your mind, timescale and likelihood of actually taking something like this live?
BG: Well, we need, for one of these high-scale, electro-generation things that's very cheap, we have 20 years to invent and then 20 years to deploy. That's sort of the deadline that the environmental models have shown us that we have to meet. And, you know, Terrapower, if things go well, which is wishing for a lot, could easily meet that. And there are, fortunately now, dozens of companies, we need it to be hundreds, who, likewise, if their science goes well, if the funding for their pilot plants goes well, that they can compete for this. And it's best if multiple succeed, because then you could use a mix of these things. We certainly need one to succeed.
CA: In terms of big-scale possible game changes, is this the biggest that you're aware of out there?
BG: An energy breakthrough is the most important thing. It would have been, even without the environmental constraint, but the environmental constraint just makes it so much greater. In the nuclear space, there are other innovators. You know, we don't know their work as well as we know this one, but the modular people, that's a different approach. There's a liquid type reactor, which seems a little hard, but maybe they say that about us. And so, there are different ones, but the beauty of this is a molecule of uranium has a million times as much energy as a molecule of, say, coal, and so, if you can deal with the negatives, which are essentially the radiation, the footprint and cost, the potential, in terms of effect on land and various things, is almost in a class of its own.
CA: If this doesn't work, then what? Do we have to start taking emergency measures to try and keep the temperature of the earth stable?
BG: If you get into that situation, it's like if you've been over-eating, and you're about to have a heart-attack. Then where do you go? You may need heart surgery or something. There is a line of research on what's called geoengineering, which are various techniques that would delay the heating to buy us 20 or 30 years to get our act together. Now, that's just an insurance policy. You hope you don't need to do that. Some people say you shouldn't even work on the insurance policy because it might make you lazy, that you'll keep eating because you know heart surgery will be there to save you. I'm not sure that's wise, given the importance of the problem, but there's now the geoengineering discussion about, should that be in the back pocket in case things happen faster, or this innovation goes a lot slower than we expect.
CA: Climate skeptics: if you had a sentence or two to say to them, how might you persuade them that they're wrong?
BG: Well, unfortunately, the skeptics come in different camps. The ones who make scientific arguments are very few. Are they saying there's negative feedback effects that have to do with clouds that offset things? There are very, very few things that they can even say there's a chance in a million of those things. The main problem we have here is kind of like AIDS. You make the mistake now, and you pay for it a lot later.
And so, when you have all sorts of urgent problems, the idea of taking pain now that has to do with a gain later -- and a somewhat uncertain pain thing. In fact, the IPCC report, that's not necessarily the worst case, and there are people in the rich world who look at IPCC and say, okay, that isn't that big of a deal. The fact is it's that uncertain part that should move us towards this. But my dream here is that, if you can make it economic, and meet the CO2 constraints, then the skeptics say, okay, I don't care that it doesn't put out CO2, I kind of wish it did put out CO2, but I guess I'll accept it because it's cheaper than what's come before. (Applause)
CA: And so, that would be your response to the Bjorn Lomborg argument, that basically if you spend all this energy trying to solve the CO2 problem, it's going to take away all your other goals of trying to rid the world of poverty and malaria and so forth, [that] it's a stupid waste of the Earth's resources to put money towards that when there are better things we can do.
BG: Well, the actual spending on the R&D piece -- say the U.S. should spend 10 billion a year more than it is right now -- it's not that dramatic. It shouldn't take away from other things. The thing you get into big money on, and this, reasonable people can disagree, is when you have something that's non-economic and you're trying to fund that. That, to me, mostly is a waste. Unless you're very close and you're just funding the learning curve and it's going to get very cheap. I believe we should try more things that have a potential to be far less expensive. If the trade-off you get into is, let's make energy super expensive, then the rich can afford that. I mean, all of us here could pay five times as much for our energy and not change our lifestyle. The disaster is for that two billion.
And even Lomborg has hanged. His shtick now is, why isn't the R&D getting discussed more. He's still, because of his earlier stuff, still associated with the skeptic camp, but he's realized that's a pretty lonely camp, and so, he's making the R&D point. And so there is a thread of something that I think is appropriate. The R&D piece, it's crazy how little it's funded.
CA: Well Bill, I suspect I speak on the behalf of most people here to say, I really hope your wish comes true. Thank you so much.
BG: Thank you. (Applause)

No comments: